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We study the resonant response of a nonlinear system to external periodic perturbations. We show by
numerical simulation that the periodic resonance curve may anticipate the dynamical instability of the unper-
turbed nonlinear periodic system, at parameter values far away from the bifurcation points. In the presence of
noise, the buried intrinsic periodic dynamics can be picked out by analyzing the system’s response to periodic
modulation of appropriate intensity.
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The effects of periodic perturbation on a nonlinear dy-
namical system is a long-standing problem and continues to
attract much interest in recent years. The main interest in the
periodically driven dynamical system has been focused on
the response of a nonlinear system, which is near the onset of
dynamical instabilities, to small periodic perturbations,
small-signal amplification of bifurcating system[1–3], peri-
odic multistability[4,5], control of chaos and spatiotemporal
patterns by global or local periodic forcing[6–13], and other
periodic driving induced behaviors in excitable or oscillatory
systems[14,15]. All those efforts have been dedicated to
understanding how the dynamical features of a nonlinear
system change as a function of the amplitude and frequency
of the periodic modulation. Recently the response of a non-
linear system to stochastic perturbations has become a sub-
ject of intense investigation, in particular the stochastic reso-
nance and coherence resonance[16]. It has been shown that
the response of a bifurcating system to external noise exhib-
its characteristic signatures for each class of dynamical in-
stabilities, which is well displayed by the power spectrum
[17]. It is interesting to note that the relationship of the
power spectrum to the dynamics was discussed in Ref.[18].

This paper addresses the issue of periodic precursors of
nonlinear instabilities and studies the response of a nonlinear
periodic system to weak periodic modulation in the absence
or the presence of noise, over the whole parameter range. We
focus our attention to the signature of dynamical instability
as revealed by the response of the nonlinear system to very
weak periodic perturbation signals, at parameter values that
is not near the onset of the bifurcation points of the unper-
turbed system. It is noted that when the system is near the
onset of dynamical instabilities, the theoretical analysis is
greatly simplified. Our interest is how to detect the possible
dynamical instability by just evaluating the system’s re-
sponse to the very weak sinusoidal perturbations. Our ap-
proach involves the direct measurement of the amplitude of
the periodically driven system when the control parameter
varies, and therefore this method provides real-time evolu-
tion of the dynamical features of the unperturbed system and
to uncover the key factors that control system dynamics in a
real, unknown system.

To quantify the resonant response of a nonlinear system to
periodic perturbation we calculate the difference between the

maximum and the minimum of the response amplitude as a
function of the frequency of the driving sinusoidal signal, for
a given signal amplitude. We demonstrate our idea by study-
ing the response of the logistic map and Rossler oscillator
under additive periodic driving for period-doubling bifurca-
tions and the coupled logistic maps for Hopf bifurcation. We
have also tested other discrete and continuous bifurcating
systems and find only the similar results.

First we look at the resonant response of a nonlinear sys-
tem that undergoes a sequence of period-doubling bifurca-
tions. We consider the logistic map with weak periodic
modulation described by

xn+1 = 1 −axn
2 + A sins2pfnd, s1d

wherea is the control parameter of the map andA and f are
the amplitude and frequency of the periodic perturbation,
respectively. In the absence of periodic driving the period-
doubling bifurcations occur at the parameter values:a1
=0.75,a2=1.25,a3=1.368 099, . . . . It has been shown that
near but before the bifurcation points, noise with appropriate
intensity can induced-like peaks in the power spectrum that
corresponds to the bifurcated dynamics, and thus precludes
the occurrence of the dynamical instability. In Fig. 1(a) we
show the relative amplitude as a function of the system con-
trol parametera, and the frequency of periodic perturbation
f. The relative amplitude is defined by the difference be-
tween the maximum and minimum of the dynamical variable
evaluated in a period of time. That is,Dx=xmax−xmin, where
xmax=maxhxn,1ønøTj, and xmin=minhxn,1ønøTj (here
T is an arbitrary large number of iteration steps). The re-
sponse curves are uniformly shifted up for consecutive val-
ues of the control parameters so that of the resonant levels
can be appreciated clearly. One of the most interesting ob-
servations is that the response curve reveals the dynamical
transition in between the successive bifurcation points,
where an unperturbed system shows only the simple mono-
tonic oscillation behavior. For example, on the parameter
interval 0.75,a,1.25 the resonance amplitude already
shows a resonance curve with two peaks ata=1.0023, an-
ticipating the occurrence of period-4 cycle. It is noted that
the signature appears at a parameter value that is far from the
dynamical instability of the unperturbed system. The dis-
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tance to the bifurcation point may be appreciated by the
height and width of the peak because the shape of the peri-
odic precursor becomes ad function as the parameter ap-
proaches the instability point. In Fig. 1(c) we display the
change of the positions of the maxima in the resonant curve
as the parameter is varied. It is seen that the frequencies
corresponding to the resonance peaks start atv=0.5 and
settle down at the frequencies of the bifurcated cycles, that
is, v=1/4 andv=3/4. It is interesting to note that our ap-
proach can also be used to determine the precise value of the

control parameter of an unknown dynamical system, where
the onset of a particular instability occurs. Figure 1(b) shows
the variation of the resonant response curve as the control
parameter crosses over the period-doubling bifurcation point.
It can be seen that the control parametera is slightly larger
than a=1.25, small spikes appear atf =kp ,k=0,1,2, . . . .
The resonant response curve shows strong fluctuation when
the control parameter is very near to the bifurcation point,
which can be regarded as a signal of dynamical instability.
As the parameter continues to increase, thed-like spikes
grow into bell-shaped peaks which will be replaced by a
smooth curve with slight modulation to signify the next dy-
namical transition. This precursor scenario repeats itself for
each of the consecutive period-doubling bifurcation inter-
vals. It is also interesting to note that the characteristic fea-
ture of conventional periodic resonance patterns observed in
a linear system that is characterized by the unimodal reso-
nance at the natural frequency is not observed in the nonlin-
ear dynamical system. It should be stressed that the weak
periodic perturbation only generates small sinusoidal modu-
lation of the periodic motion of the original system. The time

FIG. 2. (Color online) Precursors of Hopf bifurcation in the
coupled logistic maps.(a) Signature of dynamical transition from a
period-2 cycle to two limit cycles as displayed by the relative am-
plitude as a function of driving frequency. The amplitude of the
periodic modulation isA=10−5 (from bottom to top:a=0.19–0.25).
(b) The variation of the resonant frequencies as a function of the
control parametera. (c) Typical resonance curves as the control
parameter crosses the bifurcation point(from bottom to top:a
=0.38–0.44). The relative amplitude is defined byDx=xmax−xmin.

FIG. 1. (Color online) Precursors of period-doubling bifurcation
in the logistic map. The variation of resonance response curve is
plotted as a function of the frequency of periodic perturbation,
at a constant strength of perturbation fixed atA=10−5,
for different control parameters(from bottom to top): (a) a
=0.96, 0.98, 1.0, 1.02, 1.04, 1.06, and(b) a=1.241, 1.144,
1.2471, 1.2501, 1.2531, 1.2561, 1.2591.(c) The shift of the fre-
quencies corresponding to the resonance peaks as a function of the
control parametera. The amplitude of periodic driving isA=10−5.
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evolution of the dynamical variable for parametera=0.96
anda=1.06, for instance, shows no appreciable difference in
the frequency of their modulated motion although the ampli-
tude of the modulated cycle changes with the control param-
eter a. This is to say, the direct measurement of the time
series gives no indicator of the ongoing dynamical transition.

We now turn to consider the effect of periodic perturba-
tion on a system that is near the onset of Hopf bifurcation. As
an example of a discrete system, we consider the coupled
logistic maps[19],

xn+1 = 1 −axn + esyn − xnd + A sins2pfnd, s2d

yn+1 = 1 −axn + esxn − ynd, s3d

wheree is the coupling strength. It is known that fore=0.4,
a Hopf bifurcation occurs ataH=0.409 88, at which the char-
acteristic multipliers of the period-2 orbit cross the unit circle
corresponding to the birth of an invariant curve or torus in
the phase space of the system. Figure 2(a)displays the change
of resonant response curve with control parametera. Since
the transition is from period 2 to two limit cycles through
Hopf bifurcation, the resonance curve is characterized by one

peak for the period-2 oscillation. It is seen that ata=0.225
the central peak located atf =1/2 begins to deform and gives
rise to two peaks on each side of the central peak. As the
parameter is further increased, those four peaks turn into
d-like spikes, symmetrically distributed with respect to the
original peak. As the parametera approaches the dynamical
transition point the resonance peaks become sharper and sud-
denly disappear when the bifurcation point is crossed, see
Fig. 2(b). Slightly after the Hopf bifurcation, small spikes
appear atf =0, p, and 2p, which is a signature of the onset
of the dynamical instability for a general nonlinear system
under weak periodic modulation.

To demonstrate the applicability of a periodic precursor
for a flow system we studied a periodically modulated
Rossler system described by

ẋ = − y − z+ A sins2pftd, s4d

ẏ = x + ay, s5d

ż= b + zsx − cd, s6d

where the parametersa andb are fixed ata=b=0.2, andc is
the system control parameter. We calculate the relative am-

FIG. 3. (Color online) Precursors of period-doubling bifurcation
in the Rössler oscillator. The amplitude of sinusoidal modula
tion is A=10−4. The variation of the resonant response curve
as a function of a driving frequency for (a) c
=1.101, 1.301, 1.501, 1.701, 1.901, 2.101, and 2.301, and(b) c
=2.8101, 2.8201, 2.8301, 2.8401, 2.8501, 2.8601, and 2.8701.

FIG. 4. (Color online) Precursors of period-doubling bifurcation
in the logistic map, in the presence of noise. The uniform noise
−1,jn,1 with strengthD=3310−5 is used. The other parameters
are the same as(a) in Fig. 1 and(b) in Fig. 2. The relative amplitude
is described byDx=xmax−xmin
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plitude defined byDx=xmax−xmin, with xmax=maxhxstd ,0
ø tøTj and xmin=minhxstd ,0ø tøTj. Figure 3 shows the
typical resonance curves corresponding to the period-
doubling bifurcation from period-2 to period-4 cycles. We
find qualitatively equivalent behavior as in the logistic map.
As for the Hopf bifurcation we studied a normal form equa-
tion for Hopf bifurcation given by

ẋ = − y + sa − x2 − y2dx + A sins2pftd, s7d

ẏ = x + sa − x2 − y2dy, s8d

where the Hopf bifurcation takes place ata=0. The typical
resonance curve is a small precursor bump that grows con-
tinuously from zero height for the parametera, is sufficiently
far away from the dynamical instability to ad function at the
parameter value slightly before the Hopf bifurcation point,
with the maximum of the peak always located at the fre-
quency of the limit cycle born from the Hopf bifurcation, in
contrast to the one-bump resonance curve for period-
doubling bifurcation which is centered atf =p. We have
tested our approach on other flow systems such as Lorenz
oscillator and the Morris-Lucar neuron model. We find this
resonance picture a common precursor of the Hopf bifurca-
tion.

To test the robustness of periodic precursors in the pres-
ence of noise, we study the response of the logistic map to
the simultaneous additive periodic and stochastic perturba-
tions. We find that since the strength of the noise is not too
much stronger than that of the periodic perturbation, the dy-
namical transition can be detected. Figure 4 shows the evo-
lution of resonance curve under an extra additive of noise in
addition to periodic modulation. Here the control parameter
is chosen to be in the period-2 to period-4 range of the
period-doubling bifurcation in logistic maps as shown in Fig.

4(a) and the Hopf bifurcation from period-2 cycle to two
limit cycles in the coupled logistic maps, see Fig. 4(b). The
data shown in Fig. 4 are the mean resonance curves averaged
over 400 sample runs. As can be seen, the weak periodic
driving can still pick out the dynamical transition points, as
displayed by the resonant response curves. If we look at the
time evolution of the dynamical variables, we find the
strongly fluctuated periodic bands, with the periodic signal
completely buried by the noise. Nevertheless, it is still pos-
sible to extract the noise-contaminated deterministic dynam-
ics from the analysis of the resonance response properties.

In summary, we have studied the resonance response of
periodically driven nonlinear dynamical systems. We show
that the response of the system to the weak periodic pertur-
bation can be used to predict the dynamical instability long
before the system undergoes the dynamical transition. Since
the amplitude of periodic modulation is very small the sys-
tem’s dynamical variables do not deviate very much from
their nominal values, which may find important applications
in physiological systems where the detection of the onset of
some pathological events is highly desired by using of some
means that does not provoke substantial changes in the origi-
nal, unperturbed system. We also show that our approach is
robust in the presence of weak external noise. We find that
for certain level of noisy perturbation, the dynamical transi-
tion may be detected by increasing accordingly the strength
of periodic modulation. However, caution must be taken be-
cause when periodic or stochastic perturbations are strong
enough, the external driving induced effects may occur, re-
sulting in novel dynamical properties. Within the limit of
small driving, our results are not dependent on the amplitude
of the periodic perturbation.
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